自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

NodYoung

专注于计算机视觉,深度学习,机器人

  • 博客(32)
  • 资源 (23)
  • 论坛 (1)
  • 收藏
  • 关注

原创 yolo训练之训练结果评估环节

在yolo中,怎么知道自己已经训练的怎么样了呢?自然是希望把训练过程中的loss等数据可视化一下,这篇文章中,我们主要就介绍一下这些。 1. 首先在训练开始的时候需要把终端信息记录到文件,我这里使用的命令是| tee train_log.txt ,可参考:Linux中记录终端(Terminal)输出到文本文件 。我们会得到这样一个文本文件: 2. 下面我们就可以用python对其进行处理了,

2016-12-29 09:20:05 9009

原创 行业相关

深度新闻资讯AI原力觉醒!2016人工智能创新公司TOP 50发布 都是谁在造车?他们造了哪些车? 观点 | 自动驾驶商业化之路:革命还是改良? 阅面科技赵京雷:从算法到视觉模块,开启本能化的机器视界 霍金、马斯克携手力推23条原则 告诫AI发展底线(附圆桌视频) 盘点 | 需要密切关注的六大AI/机器学习领域 2016年独角兽俱乐部图谱 吴军:机器智能时代,如何成为最先受益的2%?

2016-12-27 23:41:54 618

原创 算法相关资源

快排 数学之美番外篇:快排为什么那样快熵、交叉熵与KL散度 如何通俗的解释交叉熵与相对熵?STL里vector、set、map等的时间复杂度STL容器的适用情况(原)

2016-12-22 09:49:50 606

原创 七月算法课程《python爬虫》第二课: Python基础

课上记录的一些python基础应用,都是很简单的。syntax基本语法a = 1234print(a)a = 'abcd'print(a)try: print(b)except Exception as e: print(e)a = [1, 2, 3 , 4]def func(a): a[0] = 2func(a)print(a)try: # Python

2016-12-21 23:48:38 939

原创 七月算法《python爬虫》第一课:Python爬虫小示例

七月算法课程《python爬虫》第一课里的示例代码,很简单。 下载地址:http://download.csdn.net/detail/nnnnnnnnnnnny/9715077jupyter notebook文件贴在这里了。七月算法 Python爬虫项目班课后习题一爬邮政编码查询网页http://www.ip138.com/post/ ,提取到每个省份邮政编码的开头数字import reques

2016-12-19 10:53:16 2668 1

原创 机器人相关资源

ROS好久不接触ROS了,今天又看了一个ROS的分享。感觉以后应该还是会把ROS捡起来,这里记录一些相关资料。 1.邵天兰 梅卡曼德机器人创始人 主题:ROS简介与重要模块源码导读 视频:http://pan.baidu.com/s/1eRDCtGI PPT:http://pan.baidu.com/s/1o8fMs6Q NY注:从比较高的角度讲解了一下ROS 2. 第42期:如何设计一

2016-12-18 10:55:25 856

原创 igraph基本使用方法示例

这是用jupyter notebook写的igraph的基本用法,使用的环境是python3+windows,代码上传到csdn资源啦:ABC of igraph关于matplotlib学习还是强烈建议常去官方http://igraph.org/python/#docs里查一查各种用法和toturial等。 下面是jupyter notebook代码导出的md文件。 1.learn_igrap

2016-12-17 00:41:50 26733 4

原创 matplotlib基本使用方法示例

这里是用jupyter notebook写的matplotlib的基本用法,使用的环境是python3+windows,代码上传到csdn资源啦:ABC of matplotlib 关于matplotlib学习还是强烈建议常去官方http://matplotlib.org/contents.html里查一查各种用法和toturial等。 下面是jupyter notebook代码导出的md文件

2016-12-17 00:29:44 9956

原创 使用python进行收据搜集示例之python_regular_expression

这里是用jupyter notebook写的关于使用Python进行数据收集的基本知识,包括crawl_and_parse、different_format_data_processing、feature_engineering_example和python_regular_expression等。之前课程里提供的资料,移植到了python3+windows环境上。代码上传到csdn资源啦:ABC

2016-12-17 00:08:07 622

原创 使用python进行收据搜集示例之feature_engineering_example

这里是用jupyter notebook写的关于使用python进行数据收集的基本知识,包括crawl_and_parse、different_format_data_processing、feature_engineering_example和python_regular_expression等。之前课程里提供的资料,移植到了python3+windows环境上。代码上传到csdn资源啦:ABC

2016-12-17 00:05:06 1306

原创 使用python进行收据搜集示例之different_format_data_processing

这里是用jupyter notebook写的关于使用python进行数据收集的基本知识,包括crawl_and_parse、different_format_data_processing、feature_engineering_example和python_regular_expression等。之前课程里提供的资料,移植到了python3+windows环境上。代码上传到csdn资源啦:ABC

2016-12-16 23:54:44 2083

原创 使用python进行收据搜集示例之crawl_and_parse

这里是用jupyter notebook写的关于使用python进行数据收集的基本知识,包括crawl_and_parse、different_format_data_processing、feature_engineering_example和python_regular_expression等。之前课程里提供的资料,移植到了python3+windows环境上。代码上传到csdn资源啦:ABC

2016-12-16 23:52:22 727

原创 pandas基本使用方法示例

这里是用jupyter notebook写的pandas的基本用法,使用的环境是python3+windows,代码上传到csdn资源啦:ABC of Pandas 关于pandas学习还是强烈建议常去官方http://pandas.pydata.org/pandas-docs/stable/里查一查各种用法和toturial等。 下面是jupyter notebook代码导出的md文件。数据

2016-12-16 22:38:45 4790

原创 numpy基本使用方法示例

前些天学了些numpy的基本用法。这里用jupyter notebook又熟悉了一遍,使用的环境是python3+windows,代码上传到csdn资源啦:ABC of Numpy 关于numpy学习还是强烈建议常去官方https://docs.scipy.org/doc/numpy/reference/里查一查各种用法和toturial等。 下面是jupyter notebook代码导出的md

2016-12-16 22:28:00 4840

原创 windows上安装python_igraph

之前尝试在windows用pip和conda直接装igraph都装不上,后来发现了lfd的网站 Unofficial Windows Binaries for Python Extension Packages , 里面有很多python的资源和库与工具。 在上面的网址中找到python_igraph去下载具体的python对应版本和是32位还是64位的,比如我下载了 python_igraph‑

2016-12-16 22:02:50 3046

原创 cs231n课程资料Python Numpy Tutorial的Python3版本

cs231n课程资料Python Numpy Tutorial的Python3版本cs231n课程提供了一个python numpy tutorial的教程,非常不错。之前看过,这些天又想爬虫和数据分析这一块,有拿出来看了看。官方给的原版的ipython notebook cs228-python-tutorial.ipynb是python 2.7版本的,学习的过程中我顺便改成了python3版本的

2016-12-12 17:25:49 2928 1

翻译 14. Evaluate multiple ideas in parallel during error analysis 错误分析时并行评估多个想法(《MACHINE LEARNIN

错误分析时并行评估多个idea你的团队有以下几个想法来改进猫检测器:解决狗被错认为是猫的问题解决“大形猫科类动物(great cats)”(狮子,豹等)被错认为是家猫(宠物)的问题提高系统在模糊(blurry)图像上的表现性能……你可以同时有效地评估所有这些想法。我通常会做一个电子表格,查看100个分类错误的开发集样本并填充在表格上,同时也会写下一些针对特定样本的评论。这里用有4个错误分类

2016-12-10 10:30:23 2526

翻译 13. Error analysis: Look at dev set examples to evaluate ideas 错误分析:查看开发集样本来评估idea(《MACHINE

下面13~17小节将主要介绍 Basic Error Analysis 基本错误分析错误分析:查看开发集样本来评估idea当你玩你的猫app时,你注意到有时它会把狗错误识别成猫。一些狗长的像猫! 于是一个团队成员建议加入第三方软件,使系统对于狗的样本处理的更好。这些改变需要花费一个月的时间,团队其他成员也都很热衷于这一方案。你应该要求他们这样做吗?在为这个任务投资一个月之前,我建议你首先评估一

2016-12-10 00:15:17 1899

翻译 12. Takeaways: Setting up development and test sets 小结:建立开发集和测试集(《MACHINE LEARNING YEARNING》翻译)

小结:建立开发集和测试集从分布中选择开发集和测试集,以反映你期望在未来获得的数据,并希望在上面做得很好。这可能和你的训练数据分布不同。如果可能的话,选择来自同一分布的开发集和测试集。为你的团队选择单一数字的评估指标进行优化。如果你关心多个目标,请考虑把它们合并到一个公式中(例如平均多个错误指标),或设定满足指标和优化指标。机器学习是一个高度迭代的过程:在发现你满意的方法之前你可能需要尝试很多

2016-12-09 20:38:20 1686

翻译 11. When to change dev/test sets and metrics 何时更改开发/测试集和评估指标(《MACHINE LEARNING YEARNING》翻译)

何时更改开发/测试集和评估指标当开始一个新项目时,我一般会试图快速选择一个 开发/测试集 ,因为这可以给团队制定一个明确的目标。我通常会要求我的团队在不到一周之内想出一个初始的开发/测试集和评估指标。提出一个不太完美的方案并迅速行动起来往往比过分考虑这些会更好。但是“一周”这个时间表并不适用于成熟的应用。例如,反垃圾邮件是一个成熟的深度学习应用。我曾经见过那些开发已经成熟的系统的团队可能会花费数月时

2016-12-09 13:57:16 1404

翻译 10. Having a dev set and metric speeds up iterations 有一个开发集和评估指标来加速迭代(《MACHINE LEARNING YEARNING》翻

有一个开发集和评估指标来加速迭代对于一个新问题,很难事先知道什么方法是最合适的。即使经验丰富的机器学习研究者在发现满意的方法之前也会尝试各种各样的idea。在构建机器学习系统时,我经常会:首先想出一些构建系统的想法(idea)在代码(code)中实现这些idea进行实验(experiment),通过实验判断我的想法 work的怎么样。(通常我的前几个想法都不是很work!)基于这些知识,再生成

2016-12-09 11:03:20 1431

翻译 9. Optimizing and satisficing metrics 优化指标和满足指标(《MACHINE LEARNING YEARNING》翻译)

优化指标和满足指标这是组合多个评估指标的另一种方法。假设你同时关心算法的准确率和运行时间。你需要在下面三个分类器中进行选择: 这里如果将准确率和运行时间组合为单个评估指标会看起来不太自然,例如:Accuracy−0.5∗RunningTimeAccuracy-0.5*RunningTime 这里你可以替代为这样:首先,定义一个“可接受”的运行时间。例如我们说任何运行时间在100ms以内的算法

2016-12-09 10:13:39 2335 1

翻译 8. Establish a single-number evaluation metric for your team to optimize 建立一个单一数字的评估指标(MACHINE LE

为你的团队进行算法优化建立一个单一数字的评估指标分类准确率是单一数字评估指标(single-number evaluation metric)的示例:你在开发集(或测试集)上运行运行一个分类器,然后得到一个正确分类的样本比例这样一个数字。根据给指标,如果分类器A获得97%的准确率,分类器B获得90%的准确率,则我们认为分类器A更好。相比之下,查准率(Precision)和查全率(Recall)【3】

2016-12-09 08:12:58 2109

翻译 7. How large do the dev/test sets need to be? 开发集和测试集多大合适(《MACHINE LEARNING YEARNING》翻译)

开发集和测试集多大合适?开发集应该足够大,大到能检测出你尝试的不同算法之间的差异。例如,如果一个分类器A具有90.0%的准去率而分类器B具有90.1%的准确率,则只具有100个示例的开发集不能够检测出这0.1%的差异。与我看到的其他机器学习问题相比,100个样本的开发集很小。常见的开发集样本规模一般在1000到10000之间。在10000个样本的情况下,你将有更大的可能性检测到0.1%的性能提升。【

2016-12-09 03:54:21 2531

翻译 6. Your dev and test sets should come from the same distribution 你的开发集和测试集应该来自同一分布(《MACHINE LEARNING

你的开发集和测试机应该来自同一分布根据你的市场,您将你的猫app的图片数据分为四个区域:(i)美国,(ii)中国,(iii)印度和(iv)其他地区。要生成一个开发集和一个测试集,我们随机地分配两个地区的数据到开发集,另外两个到测试集,对吗?比如来自美国和印度的数据在开发集,中国和其他地区的在测试集。一旦你这样定义了开发集和测试集,你的团队将专注于提高开发集的表现性能。因此,开发集应该反映你真正想要提

2016-12-09 03:05:57 2605

翻译 5. Your development and test sets 你的开发集和测试集(《MACHINE LEARNING YEARNING》翻译)

下面几个(5~12)章节将主要介绍 Setting up development and test sets 建立开发集和测试集你的开发集和测试集让我们回到之前关于猫的图片的例子:你制作了一个移动APP,用户可以上传很多不同事物的图片到你的app上,你想要自动发现关于猫的图片。你的团队从不同的网站下载大量猫(正样本,positive examples)和非猫(负样本,negative examp

2016-12-09 02:15:46 4259 2

翻译 4. Scale drives machine learning progress 规模促进了机器学习的发展(《MACHINE LEARNING YEARNING》翻译)

规模促进了机器学习的发展深度学习(神经网络)中的许多想法已经存在了几十年了。为什么这些idea现在突然火了呢?促使近年来进步的最大的驱动因素有两个:大量可用的数据。如今人们在数字设备(笔记本电脑,移动设备等)上花费比以前多得多的时间。这些活动产生了大量的数据,我们可以使用这些数据来训练我们的学习算法。计算能力的提升。仅仅在几年前我们才能够训练足够大的神经网络,以利用我们现在所拥有的巨大的数据量。

2016-12-09 01:03:42 2751 1

翻译 3. Prerequisites and Notation 预备知识和符号约定(《MACHINE LEARNING YEARNING》翻译)

预备知识和符号约定如果你曾经学习过机器学习的课程(如我在coursera上的machine learning MOOC)或有应用监督式学习的经验,你将能够理解下面这段文字。我假设你熟悉监督式学习 (supervised learning):使用标记的训练样例(x, y)学习一个从x映射到y的函数。监督式学习包括线性回归(linear regression),对数几率回归(也叫逻辑回归,logisti

2016-12-08 23:50:17 3236

翻译 2. How to use this book to help your team 如何使用这本书来帮助你的团队(《MACHINE LEARNING YEARNING》翻译)

如何使用这本书来帮助你的团队在读完这本书后,你将对如何制定机器学习项目中的技术方向有一个深入的了解。但是你的队友可能并不理解你为什么建议某一个特定的方向。或许你希望你的团队定义一个单一数字的评估指标,但他们却并不信服。你如何说服他们?这就是为什么我把章节设置的这么短:这样你可以打印出来并给你的队友看仅仅你想要让他们知道的那1~2页。面对几个不同的选择,在优先次序上的一些改变可能会对你团队生产力产生巨

2016-12-08 23:22:57 3602

翻译 1. Why Machine Learning Strategy 为什么需要机器学习策略(《MACHINE LEARNING YEARNING》翻译)

为什么需要机器学习策略机器学习是很多重要应用的基础,例如网页搜索,反垃圾邮件,语音识别等。如果你或你的团队正在开发一个有关机器学习的应用,并且你想要获得快速地进步。这本书将会帮助到你。示例:建立一个识别含有猫的图片的创业公司也就是说你建立了一个创业公司,为猫爱好者提供无尽的猫的图片。你打算使用一个神经网络建立一个计算机视觉系统来检测图片中的猫。 但悲催的是,你的学习算法的准确率目前并不够好。所

2016-12-08 21:52:17 7029 1

翻译 《MACHINE LEARNING YEARNING》翻译——开篇

《MACHINE LEARNING YEARNING》是Andrew NG最近出的本新书,目前正在陆续发布书的手稿。打算翻译一下这本书,并借机梳理一下机器学习方面的知识。翻译中的任何不足之处,欢迎大家不吝指出。Table of Contents (draft)目录 1. Why Machine Learning Strategy 为什么需要机器学习策略 2. How to use this

2016-12-08 21:14:17 16954 8

原创 Python爬虫数据分析相关资源

官方文档python官网 pandas documentation NumPy Reference matplotlib documentation python-igraph scikit-learn document Beautiful Soup 4.4.0 文档 Selenium-Python中文文档 Requests: 让 HTTP 服务人类爬虫会用到基础w3school

2016-12-06 19:37:22 1167

VS2010基于对话框的MFC串口通信简明例程(源码)

VS2010基于对话框的MFC串口通信简明例程的源码,内涵一个虚拟串口软件。

2015-04-28

Python爬虫示例代码

上七月算法 Python爬虫班 第一课示例代码

2016-12-19

VS2010 VC++创建.rc资源文件(二)

欢迎浏览我的技术博客:http://blog.csdn.net/nnnnnnnnnnnny 此文件是关于文章《VS2010 VC++创建.rc资源文件》中的一个程序

2015-06-07

VS2010下孙鑫MFC第15章网络聊天室程序的实现

前几天仿照孙鑫《VC++深入详解》书中第15章网络聊天室程序的实现重写了这个程序,VS2010下的程序与书中所写有所差别。

2015-06-21

OpenCV3编程入门_毛星云编著

浅墨_毛星云的博客大家都应该看过吧,个人非常喜欢。这是他出的那本《OpenCV3编程入门》的PDF版,首先表示非常喜欢也感谢浅墨的的这个学习资料,是我们的学习能够紧跟时代。书的光盘资料在他的博客http://blog.csdn.net/poem_qianmo/article/details/44416709 中有公开,大家可以自行下载。最后,再次感谢浅墨。

2015-12-05

扫雷程序源码

欢迎浏览我的技术博客:http://blog.csdn.net/nnnnnnnnnnnny 此文件是关于文章《VS2010 基于MFC的扫雷demo》中的程序。其中有三个程序,release文件是网上下的.exe应用程序,example文件是网上别人的例程,mine是自己模仿别人写的demo

2015-06-12

手写数字识别

python写的手写数字识别,分别使用sklearn的SVM方法和非库函数版的Knn

2017-01-06

基于Activex控件的C++、C#混合编程

这里我首先新建一个基于MFC的Activex控件的工程,把自己要用C++实现的算法融合进来。然后在C#项目(我用的是Winform编程)中直接添加此控件,再通过调用控件的属性、消息或方法(我使用的主要是方法)等接口从而调用了C++所实现的算法。

2015-11-07

ABC of igraph

igraph基本使用方法示例

2016-12-17

VS2010 VC++创建.rc资源文件(一)

欢迎浏览我的技术博客:http://blog.csdn.net/nnnnnnnnnnnny 此文件是关于文章《VS2010 VC++创建.rc资源文件》中的一个程序

2015-06-07

Machine_Learning_Yearning_V0.5_01.pdf

Andrew Ng的新书《Machine Learning Yearning》01部分

2016-12-10

ABC of data_collection

使用python进行data_collection基本示例

2016-12-16

CS231n课程知识点汇总(lecture1-5).docx

CS231n课程知识点汇总(lecture1-5),详见博客http://blog.csdn.net/NNNNNNNNNNNNY/article/details/53224685

2016-11-18

ros_by_example_vol2_indigo.pdf

为了方便查看,自己补了书的目录

2016-08-04

ABC of Numpy

numpy基本使用方法示例

2016-12-16

ABC of Pandas

Pandas基本使用方法示例

2016-12-16

模式识别与机器学习 翻译 马春鹏(带目录)

书很不错,网上下下来没有目录,强迫症,自己画两小时添了个目录。如果你也需要,直接下载吧,节省两小时

2016-12-06

ABC of matplotlib

matplotlib基本使用方法示例

2016-12-17

Machine_Learning_Yearning_V0.5_01

2016-12-08

Machine_Learning_Yearning_V0.5_03

Machine_Learning_Yearning_V0.5_03

2016-12-08

Machine_Learning_Yearning_V0.5_02

Machine_Learning_Yearning_V0.5_02

2016-12-08

numpy基本使用方法示例

numpy基本使用方法示例

2016-12-16

pandas基本使用方法示例

pandas基本使用方法示例

2016-12-16

NodYoung的留言板

发表于 2020-01-02 最后回复 2020-05-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除